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There are a number of naturally occurring proteins such as 
hemoglobin and G-proteins, the activities of which are regulated 
by association and/or dissociation of a small molecule at a specific 
position.1 Perturbation given by a small molecule induces a 3D 
structural change of a protein so as to switch the net reactivity. 
Development of a general strategy for the effector-mediated 
control of a protein activity can facilitate the design and synthesis 
of stimuli-responsive artificial proteins that are among the most 
important targets in recent protein engineering.2 

We describe herein the sugar-mediated regulation of the activity 
of a semisynthetic myoglobin. In a reconstituted myoglobin with 
a heme cofactor bearing two phenylboronic acid groups at the 
proximity of its active site, the interaction between the heme 
cofactor and the apoprotein is suitably perturbed by binding an 
additive sugar, and, as a result, the dioxygen storage activity of 
the semisynthetic myoglobin, suppressed in the absence of the 
sugar, is recovered. 

The phenylboronic-acid-appended myoglobin (Mb(PhB-
(OH)2)2) was prepared from a synthetic heme I3 and horse heart 
apomyoglobin according to the standard reconstitution method.4 

The purified Mb(PhB(OH)2^ was nearly as a-helical as native 
Mb, as monitored by circular dichroism (CD) spectroscopy,5 and 
had a typical high-spin iron(III) (gx = gy = 5.9, gz = 2.0) in its 
active center of heme, as determined by electron paramagnetic 
resonance (EPR) spectroscopy at pH 6.O.6 The absorption spectra 
of Mb(PhB(OH)2)2 derivatives obtained by ligand-exchange 
reactions from the sixth axial H2O to other anions (fluoride, 
azide, and cyanide) and those obtained by the reduction and 
oxygenation reactions were almost identical with those of native 
Mb.7 These results show that the semisynthetic Mb(PhB(OH)2)2 
was successfully reconstituted in its structure similar to native 
Mb. 

We observed a slight change in the U V-visible spectrum of the 
oxidized form of Mb(PhB(OH^)2 (met-form) when D-fructose, 
a monosaccharide, was added to the aqueous solution (pH 7.5) 
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Figure 1. UV-visible spectral changes of met-Mb(PhB(OH)2)2 by 
addition of D-fructose (0 mM (—), 100 mM (- - -)) to met-Mb(PhB-
(OHh)210 MM, 50 mM phosphate buffer, pH 7.5 at 25 0C. Inset: pH 
titration curve of met-Mb(PhB(OH)2)2 in the absence (O) and the presence 
( • ) , of D-fructose (0.1 M) at 25 0C. 
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(Figure 1). By analogous UV-visible spectra of native Mb in 
acidic pH, this spectral change is reasonably ascribed to the 
protonation of the axial OH- on iron(III).8 The detailed pH 
titration of met-Mb(PhB(OH)2)2 both in the absence and in the 
presence of D-fructose (0.1 M) clearly shows that the pKt of the 
coordinated H2O shifted from 8.0 to 8.5 by addition of D-fructose 
(inset of Figure 1). In the other reconstituted Mb with a heme 
2 (Mb(OEt)2)

9 which has no phenylboronic acid group, the pA» 
(8.0) did not change, irrespective of D-fructose. Also, no influence 
of the additive D-fructose on the pATa (9.0) of native Mb was 
observed.10 It is well-known that a neutral boronic acid group 
changes to a negatively charged borate anion even in the neutral 
pH by complexation with sugars.' • The newly generated negative 
charges in the side chains of the heme 1 may induce the tight 
ion-pair formation between cofactor and apo-Mb, as in the case 
of native Mb assisted by two propionate anions of protoheme.12 

Such a rearrangement of heme in holoprotein partially explains 
the result that the acidity of the axial H2O in met-Mb(PhB(OH)2)2 
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Figure 2. Lifetimes of oxy-Mb(PhB(OH>2)2 in the absence of sugars (O) 
and in the presence of 0.1 M D-fructose (•) and of 0.1 M D-glucose (•). 
The oxy-Mb(PhB(OH)j)2 was prepared by NajS204 reduction of met-
Mb(PhB(OH)2)2 and subsequent 62 gas introduction. Time courses of 
reaction of oxy-Mb(PhB(OH>2)2 were monitored by the decrease of the 
absorbance at 580 nm, characteristic of the oxy complex: Mb(PhB-
(OH)2)2 10 MM, 50 mM phosphate buffer, pH 7.5 at 25 8C. 

shifts from the value identical with that of met-Mb(OEt)2 to that 
close to the value of the native upon addition of D-fructose. 

Figure 2 compares the relative stability of the dioxygen complex 
of Mb(PhB(OH)2)2 (oxy-Mb(PhB(OH)2)2) with and without 
sugars. In the absence of sugars, the oxy form is gradually 
autoxidized to the met form with a first-order rate constant (fcox) 
of0.ll h"1. Compared to native Mb (feOT = 0.02 h"1), the stability 
of the dioxygen complex (i.e., active state of Mb) is reduced, 
probably due to the lack of two propionate anions and the 
incorporation of bulky phenyl groups of 1. By addition of 
D-fructose, oxy-Mb(PnB(OH)2)2 was greatly stabilized (k0% = 
0.03 Ir1) to recover the dioxygen-storage activity comparable to 
that of native Mb.13 D-Glucose, which has a lower affinity with 
phenylboronic acid than D-fructose,14 is less effective for the Mb 
activity (fcox = 0.06 Ir1)- The sugar-facilitated stabilization of 
the dioxygen complex occurs in the range of pH 7.5-8.5 (at pH 
8.5, A:,,* was 0.13 and 0.03 Ir1 in the absence and in the presence 
of D-fructose, respectively). No effects of sugars were observed 
in pH 6.0 and 9.6. The pH dependence is consistent with the p#a 
shift induced by D-fructose. The lifetimes of the dioxygen complex 
of native Mb and Mb(OEt)2 (fera = 0.13 h"1) were not affected 
by D-fructose. Conceivably, the subtle change in cofactor-
apoprotein interaction induced by sugar-binding was directly 
reflected in the protein activity (see Figure 3).1S 

As one of the important control experiments, we prepared a 
randomly modified Mb with 4-((succinimidyloxy)carbonyl)-
phenylboronic acid (averaged modification number, eight phe-
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Figure 3. Schematic illustration of the sugar-induced change of the heme-
apomyoglobin interaction. 

nylboronic acid groups per Mb).16 Neither the sugar-induced 
pATa shift nor stabilization of the dioxygen complex occurred in 
the randomly modified Mb (pAT, = 9.6, km = 0.10 h"1, both in 
the presence and in the absence of 0.1 M D-fructose). It is clear 
that the active-site-directed introduction of nonnatural functional 
groups is much more efficient for the sophisticated functional-
ization of native proteins than the random one. 

We conclude that a sugar-sensitive, semiartificial myoglobin, 
which has a potential application to a novel biosensor, is 
successfully synthesized by a convenient reconstitution method 
of apo-Mb, with a synthetic heme covalently appending a 
nonnatural recognition site. The present results also suggest that 
incorporation of a rationally designed nonnatural group at a 
suitable site is an essential technique in the rapidly developing 
field of protein-based materials science.'7 Our methodology would 
be applicable to other cofactor-depending proteins and enzymes. 
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